科学研究



庆大霉素生物合成研究新进展

庆大霉素(Gentamicin)是一种重要的氨基糖苷类抗生素,由于其在治疗细菌感染方面所表现出的良好疗效而在临床上得到长期广泛的应用。特别是近几年来所展示的在肿瘤治疗方面的应用潜力使得这一传统药物开始焕发出新的活力并重新成为抗生素领域的研究热点之一。然而,这一为人类健康做出杰出贡献的临床药物自上世纪六十年代发现并应用以来,其生物合成机制的机理一直是个未解之谜。

孙宇辉教授课题组综合利用分子遗传学和生物化学等研究手段,首次证实了庆大霉素生物合成途径的代谢中间产物庆大霉素X2是引发庆大霉素多组分合成的一个关键中枢,X2中C-6'位经Radical SAM依赖型甲基转移酶GenK甲基化形成G418,使代谢支路之一导向形成庆大霉素C2、C2a和C1。X2中C-6'位又可由黄素依赖型脱氢酶GenQ催化,通过氧化脱氢反应产生6'-DOX,最终导向形成庆大霉素C1a和C2b。同时,还解析了由庆大霉素A2到最终庆大霉素C复合物的关键共同中间体---庆大霉素X2的生物合成机制。即在氧化还原酶GenD2和转氨酶GenS2连续的催化下,庆大霉素A2 C-3''位的仲醇首先转变成了胺。随后,SAM依赖型N-甲基转移酶GenN促使胺发生特异性甲基化,形成了庆大霉素A。最后,在SAM 依赖型和钴胺素酶GenD1的催化下,C-4''位发生C-甲基化形成了庆大霉素X2。这些进展为在分子水平上全面揭示了庆大霉素的生物合成机制,并利用组合生物合成和合成生物学方法和技术开展氨基糖苷类抗生素高效定向优化和创新提供了理论依据。该系列研究成果连续发表于《Cell》子刊Chemistry & Biology 2015,22:251-2612015,21:608-618

 

一种新型乙酰化烯键合成机制的研究进展

天然产物生物合成机制的阐明是通过合成生物学和组合生物合成进行药物人工设计和合成的重要前提。Tetronates是一类含有4-羟乙酰乙酸内酯结构(Tetronate ring)的天然产物,是聚酮合酶抗生素的一个重要家族。早期研究阐明Tetronate ring是由β-酮酰-ACP缩合酶III(FabH)催化甘油-S-ACP连接到聚酮前体环化形成,同时揭示环上端烯(C4-C5双键)作为亲二烯体是发生狄尓斯-阿尔德反应合成复杂螺环化合物Spirotetronates所必需的。孙宇辉教授课题组以Tetronates天然产物Agglomerins的生物合成为模型,利用体内遗传敲除、异源宿主表达、体外蛋白催化等手段完整阐明了Agglomerins的生物合成路径,特别阐明了五元内酯环上亲二烯体的全新合成机制,即首先Agg4(α-酮戊二酸脱氢酶E2单元)乙酰化羟基-agglomerins前体,然后Agg5(水解酶/酰基转移酶)催化脱去乙酸最终形成双键。该研究结果近期发表于Angewandte Chemie International Edition 2013,52(22): 5785-5788

 

DNA磷硫酰化修饰在细菌基因组中广泛分布且量化存在研究进展

在细菌基因组中证明了DNA磷硫酰化修饰的广泛存在,这是DNA骨架上硫修饰研究领域又一个新的重要进展。集高敏检测与精细量化于一体,从飞摩尔水平(10-12摩尔)对16种不同序列的磷硫酰化DNA双核苷酸及其在染色体上的修饰频率进行同步鉴定,实现了硫修饰DNA快速、高效、高通量、可定量的化学检测。在此基础上,从栖息于多样化生态环境的多种代表性微生物中发现了新型硫修饰DNA上前所未见的修饰方式包括d(GPST)、d(CPSA)、d(TPSA)、d(APSA)和d(CPSC),阐明了DNA硫修饰在从土壤微生物到海洋微生物,从植物致病菌到人类病原菌,从好氧菌到厌氧菌,甚至在最小可自主生长的微生物之一的C. pelagibacterubique HTCC1002上表现出的广泛多样性,揭示出硫修饰是自然微生物DNA骨架上广泛存在又非常独特的生理修饰。

另外,此研究还首次将DNA硫修饰研究扩展到了环境基因组学 (Metagenomics),在马尾藻海域、俄勒冈海岸水域的海洋环境中发现了 dnd 基因簇以及多种序列的DNA硫修饰包括d(GPSA),d(GPSG),d(GPST)和d(CPSC);同时发现硫修饰微生物的分布与特定的海洋区域、海洋深度相关,例如,d(GPSG)在马尾藻海多存在于深达200米的深层海域,而d(CPSC)则存在于各个水层。进化树分析发现dnd基因的传播符合基因横向转移的特征,为今后研究dnd基因簇的进化及其在不同微生物间的物质交流和生理功能奠定了新的基础。

研究还通过第二代测序技术鉴定了数个弧菌的部分基因组,以及这些基因组信息与DNA骨架硫修饰之间的关系,同时发现染色体上的DNA硫修饰受到严谨的调控,其数量化分布的频率符合限制修饰系统的特征,佐证DNA硫修饰与某种新型的限制系统相关联。王连荣和陈实教授课题组此研究结果已发表于Proceedings of the National Academy of Sciences of the United States of America 2011,108 (7):2963-2968

 

以替代能源研发为导向的微生物源脂肪酸合成优化的研究进展

微生物来源的脂肪酸衍生物是化石燃料和化工原料的潜在替代品,对脂肪酸合成酶的研究是这一研究方向的关键和热点。在所有的脂肪酸合成酶中,大肠杆菌脂肪酸合成酶的研究最为深入,是生物化学教科书中的经典内容,但人们对于整个酶系的稳态动力学性质和其工作机理等诸多深层次问题仍知之甚少。刘天罡教授课题组与美国斯坦福大学Chaitan Kholsa教授实验室密切合作,利用体外重组的方法,分别表达、纯化出脂肪酸合成酶中的各个亚单位(FabA、FabB、FabD、FabF、FabG、FabH、FabI、FabZ和ACP)以及催化释放游离脂肪酸的TesA,在体外重建了这个系统,并通过调节底物、辅因子、以及各个亚单位的相对浓度以阐明了脂肪酸合成酶的最佳模式。他们首先通过荧光定量PCR和Western blot实验确定了细胞内脂肪酸合成酶各组分的相对含量,再根据这一指导建立体外反应体系。通过简单直接的体外实验证明乙酰辅酶A、丙二酸单酰辅酶A、NADPH、NADH在较高浓度下不会对脂肪酸合成酶的活性造成抑制。FabA、FabB、FabD和FabG这四个蛋白对脂肪酸合成速率无明显影响,FabF、FabH在高于参照条件浓度(1 uM)时会抑制脂肪酸的生成。有趣的是,FabI和FabZ以剂量依赖型方式加强脂肪酸的合成。而ACP和TesA均在32 uM这一浓度下使脂肪酸的产率达到最大值,超过这一浓度,则引起抑制。由此推测出可能是一种或几种乙酰基ACP中间产物限制了脂肪酸合成酶的转化速率,进一步研究发现ACP主要以C6、C10、C16、C18形式存在。同时,通过构建了众多突变体对以上结论在体内实验中进行验证,并证明了体外反应体系的正确性。

继2010年发展了脂肪酸合成优化的cell-free系统以后,又成功地将这一系统升级为体外重组系统,并利用该系统成功地对大肠杆菌脂肪酸合成酶进行了系统优化和稳态动力学分析。目前这一体外系统为研究脂肪酸合成酶提供了一个全新的研究平台,将为利用脂肪酸合成酶系统生产新型生物燃料和化工产品奠定扎实的理论基础。该成果发表于Proceedings of the National Academy of Sciences of the United States of America 2011,108(46): 18643-18648


基因组序列指导的红树林链霉菌新种的天然产物发掘新进展

海洋天然产物的发掘是新药发现的重要途径,红树林微生物是海洋天然产物的重要来源。洪葵课题组长期从事红树林微生物资源的收集及新药发现前期研究,积累了红树林放线菌的新种及新化合物资源。为了充分开发放线菌新种的天然产物合成潜力,该课题组运用基因组信息及遗传操作和天然产物分离提取技术,对一株红树林链霉菌新种清澜链霉菌172205进行了深入发掘。首先,通过全基因组测序,获得了基因组大小为7186kb的精细图,通过antiSMASH等生物信息学分析,发现该基因组有21个与次级代谢有关的基因簇,包括4个聚酮 I型、2个聚酮 II型、 1个聚酮 III型、 5个萜类、4个非核糖体肽合成酶、2个离子载体、1个羊毛硫酯类、1个杂合型及1个其它类型。接着运用单菌多化合物策略,在基因组序列指导下发现了促肠活动素(enterocin), 四氢嘧啶(ectoine), 戊丙酯菌素(pentalenolactone) 和 溶血脂质(lysolipin) 四类化合物。其中促肠活动素是一类优势主体化合物,通过基因敲除技术除去该化合物生物合成的基因簇后,有利于其它低含量化合物的检测及分离。通过活性跟踪及色谱技术进一步发现了粪卟啉(Coproporphyrin III)和PreQ0(非次级代谢产物)。从上述六类化合物中已经分离纯化促肠活动素和PreQ0两类化合物并进行了生物活性评价,发现前者对阿尔茨海默症筛选模型,后者对肿瘤细胞模型具有良好的活性。洪葵教授课题组该项研究的结果于2015年分别发表在Applied Microbiology and Biotechnology Anti-cancer Agents in Medicinal Chemistry刊物上。


新型多功能小分子探针构建及其在癌症早期诊断中的应用

分子影像可以通过非入侵的方法,在活体检测细胞和分子水平的生理变化过程。相比单一功能的分子探针,多功能分子探针(例如多模态或者多靶点的分子探针)在分子影像中扮演着越来越重要的角色。目前构建多功能分子影像探针的平台包括小分子平台、高分子平台以及纳米材料平台。相对于高分子和纳米材料构建的分子探针,多功能小分子探针具有更好的临床转化能力。然而,通过简易的化学方法构建有效的多功能小分子探针,在分子影像研究中仍然是一项挑战性工作。洪学传教授课题组采用新型多功能小分子平台以及简便的化学反应从而进一步构建新型多模态小分子探针,针对肿瘤早期诊断研究中的重要靶点uPAR,开展体外和体内多模态影像方面的研究工作。首先我们以生物兼容性好、具有环张力的环辛炔(BCN)作为小分子平台,借助催化量有机碱发生巯基-环辛炔点击化学,在BCN分子骨架中实现可控地导入各种功能化生物分子。基于此分子平台,成功制备了新型uPAR靶向的PET/CT/NIRF多模态小分子探针CHS1,并进一步评价其在脑胶质瘤细胞(U87MG)和在体显像效果。与之前报道的构建多功能小分子探针的分子平台相比,BCN分子平台主要有两点优势:1)通过简单和廉价的有机碱催化的巯基-炔基反应,不仅可以在室温和水溶液条件下进行分子探针的构建,而且该反应可以兼容一系列活性基团,同时还可以构建一些光敏感多功能分子;2)合成多功能小分子探针步骤简单,无需涉及保护和脱保护步骤,能够可控地获得单加成或者双加成产物。放射化学标记实验证实64Cu-CHS1具有较高的放射标记率(>96%)、放化产率和纯度(>95%)和比活度(800 mCi/µmol),同时64Cu-CHS1保持了Cy5.5光学活性(在PBS缓冲液中最大吸收光谱在685纳米,而最大发射波长为700纳米)。细胞实验结果显示,64Cu-CHS1能够特异性靶向U87MG细胞的uPA受体。荷瘤鼠PET/CT/NIRF显像结果显示64Cu-CHS1探针具备高肿瘤摄取率(2小时显像点肿瘤摄取值为3.69 %ID/g)、高显像对比度:肿瘤/肌肉比值(2小时显像点,T/N值为8.4)以及高靶向特异性,这些优异显像效果使得64Cu-CHS1有望成为一个有临床转化潜力的uPAR靶向的多模态小分子探针。这一突破性成果以“Strained Cyclooctyne as a Molecular Platform for Construction of Multimodal Imaging Probes”为题发表于Angewandte Chemie International Edition(2015, 54(20), 5981-5984)。 因研究内容的重要性和涉及热点领域,该论文被评为期刊当期Hot Paper(热点论文)。


铜催化的氧化偶联醛和烯烃:一种直接制备α,β-不饱和酮的研究进展

无卤代物和有机金属底物参与的氧化偶联R1H和R2H已经引起了大家的广泛关注。虽然在这个领域中已经有一些突破性进展,但是仍旧有一些挑战未能解决。其中一个过程就是氧化偶联醛的C-H和其他C-H键。同时,醛和烯烃氧化偶联的产物α,β-不饱和酮是一系列具有生物和药物活性的化合物的核心结构。因此,氧化偶联醛和烯烃制备α,β-不饱和酮显得尤为重要。最近我们实验室成功实现了二级和三级α-羰基烷基溴代物与烯烃的偶联反应。机理上这个反应被认为是二级和三级α-羰基烷基自由基与烯烃发生自由基加成,然后经过自由基氧化得到想要的产物。因此,我们借鉴上述的思路通过过氧化物使醛产生酰基自由基,然后酰基自由基与烯烃发生自由基加成反应,产生的自由基在金属的协助下发生自由基氧化,再进一步发生消除反应成功实现了醛和烯烃氧化偶联制备α,β-不饱和酮。雷爱文教授课题组此研究结果近期发表于Angewandte Chemie International Edition 2013,52(8):2256-2259

 

质子酸催化的氧化环化合成四氢苯并双呋喃的研究进展

如何更为环境友好的实现氧化偶联反应一直是我们课题组努力的方向。在使用过渡金属作为催化剂的氧化偶联反应基础上,最近雷爱文教授课题组报道了质子酸催化的氧化偶联反应,合成了具有生物和药物活性的氢化呋喃类化合物。该反应是在温和的条件下,由非金属催化通过直接C-H键断裂实现呋喃的合成。雷爱文教授课题组以在线红外仪及反应中间体的捕获、再反应等手段完整阐明了两个不同C-H断裂形成呋喃环的路径,特别阐明了四氢苯并双呋喃的全新合成机制,即首先苯醌与烯烃在HOTf的催化下,经过[3+2]环加成形成第一个呋喃环,然后第一步反应形成的中间体在HOTf催化下,以1-氯代对苯醌做氧化剂经过一步氧化环化形成第二个环。该研究结果近期发表于Angewandte Chemie International Edition 2013, 52(39):10195-10198

 

氧气引发自由基类型的端炔的有氧氧化反应的研究进展

在氧化偶联反应领域中,使用氧气作为氧化剂无疑是最为理想的方式;同时伴随着当代金属有机化学以及绿色化学理念的不断推进,如何高效、高选择性、环境友好的实现自由基氧化偶联反应成为了有机化学家们一直努力探索的方向。雷爱文教授课题组以自然界普遍存在的端炔化合物为原料,利用氧气作为自由基引发剂和氧化剂,高选择性的实现了重要有机合成骨架结构——砜酮类化合物的合成。该反应利用亚磺酸本身的自氧化启动反应,使用了洁净的氧气作为新型的自由基引发剂和氧化剂,在不借助外来金属和自由基引发剂的温和条件下即可顺利得到目标产物;在线红外动力学研究揭示了吡啶不仅起到了抑制攫氢反应的发生,同时还有效的降低了亚磺酸的活性。该研究结果近期发表于Journal of the American Chemical Society 2013, 135(31):11481-11484

 

莳萝子抗真菌活性及作用机制的研究进展

真菌污染给人类生活的诸多方面带来了严重的危害。挥发油是植物体内次生代谢产物之一,其作为天然抗真菌药物具有很好的潜在开发价值。莳萝子是伞形科草本植物莳萝的种子,其挥发油具有抗菌、降血脂、抗氧化等多种生物活性。运用GC-MS从莳萝子挥发油中鉴定了共占挥发油总含量99.4%的23个化合物。试验证明莳萝子挥发油对黄曲霉、白色念珠菌具有较好的抑制活性,MIC值分别为:2.0 ul/ml和0.625 ul/ml。并以细胞膜和线粒体为作用靶标研究莳萝子挥发油对黄曲霉和白色念珠菌两种真菌的抗菌作用机理,采用流式细胞仪等检测莳萝子挥发油对真菌细胞膜的损伤并进一步通过阻碍细胞膜中麦角固醇的合成实验来验证,真菌细胞膜的严重破坏致使细胞内容物泄漏;采用罗丹明染色法测定莳萝子挥发油作用后真菌的线粒体膜电位(MMP)、葡萄糖诱导酸化法测定pH值变化、分光光度法测定线粒体ATP酶及脱氢酶活性、荧光染色法测定线粒体内活性氧(ROS)含量。结果表明莳萝子挥发油导致MMP升高和线粒体内脱氢酶的活性被显著抑制,这些线粒体功能的异常导致线粒体内ROS积累,而由莳萝子挥发油诱导的ROS的积累随着抗氧化剂半胱氨酸的加入其含量被显著的抑制,从而抑制了莳萝子挥发油的抗真菌活性,说明ROS是莳萝子挥发油抗真菌作用的关键介导,因而进一步探究莳萝子挥发油诱导线粒体ROS积累是否造成其细胞凋亡。王有为教授课题组此研究结果近期发表于Food Control 2011,22(12):1992-1999PLoS One 2012, 7(1):e30147;Journal of Medical Microbiology 2013, 62(Pt8):1175-83;Fungal Biol, 2014, 118(4): 394-401;PLoS ONE, 2015, 10(7): e0131733:1-15


有机小分子链终止探针的设计、合成以及药物开发的研究进展

传统的自然化学连接合成肽键法在现代多肽、蛋白质药物开发方面起到重要作用,但必须经过由S到S,S到N的转变完成,只对氨基末端β位存在巯基的氨基酸、多肽适用,有很大的底物局限性。近期我们发现硫酯化合物在硅化物的作用下可以与β位末端不存在巯基的氨基酸直接偶合形成肽键,解决目前自然化学连接法的底物适应性等问题,具有标志性意义,该研究成果已发表在Green Chemistry 2011,13(10):2723-2726上和获得授权发明专利。这种新颖的多肽合成方法适合于工业化生产,具有反应条件温和、污染少、成本低廉、产物光学纯度高(不消旋)、不用贵金属和其他环境污染耦合剂等优点,将在现代药物开发中的应用具有很高的理论意义和经济价值。该体系经过优化,可以把商品化的α-氨基酸酯或荧光标记物作为有机小分子链终止探针,成功地应用到有CoA及ACP的化合物的体外反应中和酶的结构修饰,效率很高。部分结果已发表在Journal of Organic Chemistry 2013, 78(14):7013-7022。在微生物药物开发中,聚酮类和核苷类天然产物生物合成机制不完全清楚,深入研究其合成中间产物,清楚了解合成途径,对微生物药物的生物合成改造和挖掘微生物药物新品种有重大的意义。利用上述有机小分子链终止探针为生物合成小分子链终止探针,在温和的条件下使生物合成中间体硫酯键断裂,与有机小分子化合物形成一个新的化合物,可以很好的解决中间产物不稳定问题,同时利用定量蛋白质组学技术发现限速步骤,利用SILAC技术标记不同元件驱动的合成基因簇或同一菌种的不同培养条件样品,然后对这些样品的总细胞蛋白进行等量混合,用LC-MS进行分析,鉴定、验证限速步骤,构建清晰的生物合成机制路线图,为人工改造微生物药物的生物合成奠定基础。同时结合上基因测序,生物信息学分析我们还能进行相应的genetic mining找到一些利用传统方法很难发现的功能基因,这些信息都能极大的指导作用。洪学传教授课题组蛋白质组学的部分研究结果已发表于Journal of Proteome Research 2012,11(12):5763-5772Proteomics 2013,13(5):2229-2237

 

雌激素受体的小分子双重调控及相关药物的研究进展

乳腺癌是一种雌激素依赖性肿瘤,雌激素通过与雌激素受体(Estrogen receptor, ER, 包括α和β型两种)作用促进乳腺癌细胞生长。针对乳腺癌临床治疗中较严重的耐药性,以及促进癌细胞浸润和转移的炎症等问题,以雌激素受体为靶点,周海兵课题组近年来主要开展具有双重调控机能的新型选择性雌激素受体调节剂(Selective Estrogen Receptor Modulators,SERMs)和下调剂(Selective Estrogen Receptor Downregulators, SERDs)研究。基于对雌二醇与雌激素受体α形成的复合物的晶体结构分析发现,雌激素受体的口袋中仍有相当一部分未占有的空间,该课题组设计、合成了一系列具有亚砜桥双环[2.2.1]庚烯三维结构的化合物,尤其通过对苯酚环上甲基位子进行微调,可以实现对ER亚型的高选择性识别,其中一个化合物对ERα的选择性为ERβ的249倍。这类化合物的成功合成,为进一步有效设计、合成和筛选抗乳腺癌药物奠定了良好的基础。以上研究结果发表于Journal of Medicinal Chemistry 2012,55(4):2324-2341ChemMedChem 2012,7(6):1094-1100上。针对耐药性乳腺癌细胞,人们发现一类新型的具有很强拮抗性能和同时能显著下调雌激素受体(尤其是ERα)水平和活性的化合物,即选择性雌激素受体下调剂(SERDs),如ICI182,780,是目前FDA批准的唯一SERD,用于治疗转移性乳腺癌。然而,ICI182,780的口服生物利用度非常差,大大影响了其疗效。基于此,该课题组设计、合成了系列新型含有磺酰胺基的氧桥双环庚烯类化合物。数个化合物与临床药物Fulvestrant具有类似的活性,但内生增值活性明显低于他莫西芬,为纯粹的拮抗剂,且口服生物利用度非常好。结构生物学研究显示,这类化合物产生了不同于传统拮抗剂的一种作用模式,从而产生SERD类活性。其次,开创性设计、合成了系列新型含有二茂铁的氧桥双环庚烯类衍生物,数个化合物对雌激素受体依耐型(ER+)和耐药型阴性(ER-)两种乳腺癌细胞均显示出良好的抑制活性,有望发展为用于耐药性乳腺癌治疗的药物。以上研究结果发表于Organic & Biomolecular Chemistry 2012,10(48):9689-9699Organic & Biomolecular Chemistry2012,10 (43):8692-8700


新型双靶点抗乳腺癌药物研究进展

针对现有治疗药物的局限性,两个或以上药物分子通过共价键相连而形成的共轭化合物(Conjugates)作为一种全新模式在药物研发领域受到广泛关注。研究发现,乳腺癌细胞中也有组蛋白去乙酰化酶(HDAC)的过度表达,通过对后者的抑制,也可以有效降低ER的水平,达到对乳腺癌细胞的抑制。基于ER结构生物学及合理药物设计,周海兵教授课题组与武汉大学生科院黄健教授合作,以雌激素受体(ER)和组蛋白去乙酰化酶(HDAC)为靶点,将具有特殊结构及特异活性的氧桥双环庚烯类(OBHS)骨架和HDAC 抑制剂SAHA侧链巧妙结合,设计合成了OBHS-SAHA共轭化合物,系统考察了这些新型双靶点共轭物的构效关系,深入探究活性高的化合物与两个靶点的作用机制,得到数个活性更高、更安全的抗乳腺癌化合物。为新型抗乳腺癌药物研究提供了新思路和技术创新。相关结果以“Novel Bioactive Hybrid Compounds Dual Targeting Estrogen Receptor and Histone Deacetylase for Treatment of Breast Cancer”为题发表在Journal of Medicinal Chemistry 2015, 58, 4550上。被BioCentury Innovations (前身为《SciBX》)作为癌症治疗领域一周中最为重要研究进展之一进行了专题亮点报道,同时该篇文章也成为Journal of Medicinal Chemistry 当月阅读最多文章之一(Most Read Article of 06/15)。


磷酸酰胺天然产物生物合成与自我抗性研究新进展

磷酸酰胺是指含有氮磷键的化合物,磷酸酰胺天然产物就是指生物体产生的含有氮磷键的小分子化合物。磷酸酰胺天然产物的结构和细胞内磷酸化的生物小分子结构非常相似,容易被细胞内的酶错误的识别、结合,但是不能被有效的催化。以“特洛伊木马”的形式,磷酸酰胺天然产物通过竞争性的抑制某些重要的酶,表现出各种各样的对人类生产和生活有用的活性。比如丁香假单胞菌产生的磷酸三酰胺天然产物Phaseolotoxin(PHT)(菜豆菌毒素),能够特异性的抑制植物细胞鸟氨酸氨甲酰基转移酶的活性而阻断精氨酸的合成,是一种非常有潜力的广谱性生物除草剂。然而,科学家们对磷酸酰胺天然产物氮磷键的生物合成以及磷酸酰胺产生菌株自我保护的抗性机制却知之甚少。赵昌明副教授课题组以PHT为模型,对其氮磷键的生物合成以及产生菌株假单胞菌的自我保护机制作了研究,相关结果以“Ornithine Transcarbamylase ArgK Plays a Dual Role for the Self-defense of Phaseolotoxin Producing Pseudomonas syringae pv. phaseolicola” 为题发表在《科学报告》(Scientific Reporters,2015)杂志上。研究结果表明,PHT的氮磷键合成在酰胺键的合成之前,这纠正了以前的认识,为鉴定氮磷键合成的直接底物提供了线索。此外,抗性基因argK的编码蛋白不仅提供替代的精氨酸合成途径,为PHT产生菌株提供一种被动的自我保护;它还修饰中间体合成副产物以调节PHT的产生,从而形成一种主动防御。

 

化药1.1类新型分子靶向性药物的研究进展

阿霉素(Doxorubicin,DOX)是蒽环类抗生素的代表性药物,也是许多肿瘤化疗方案中一线核心药物,但它缺乏肿瘤选择性及使用后产生耐药性。为了提高药物疗效并克服毒性副作用,我们利用配体-受体反应特异性原理,以肿瘤细胞中高度表达或过度表达的表皮生长因子受体(EGFR)为分子靶标,以该受体的配体活性片段:CMYIEALDKYAC(EBP)为载体,与DOX共价偶联形成DOX-EBP。经研究发现,DOX-EBP具有:①高度的肿瘤选择性;②专一的受体介导;③良好的生物相容性;④低廉的成本等特点。可以克服药物使用中遇到的缺乏肿瘤选择性问题及耐药性问题。设计DOX-EBP 针对的对象是已经使用过抗肿瘤药物并已产生耐药的肿瘤患者、身体条件差的晚期肿瘤患者。

DOX-EBP合成路线简单,工艺成熟可靠,原料全部国产化,可开发成粉针剂。已完成了原料的中试生产,建立了质量标准,进行了稳定性研究。对原料进行了规范的药理学研究,包括:①作用机理研究发现,DOX-EBP靶向集聚高浓度药物到肿瘤细胞中发挥效应;DOX-EBP经受体介导入胞以避开转运蛋白的影响,可克服耐药。②药效学研究发现,DOX-EBP对鼠肝癌移植瘤和人乳腺癌、人胃癌和人肺癌细胞裸鼠移植瘤的治疗效果优于原药DOX(低相对肿瘤增殖率和高成活率);DOX-EBP对耐药的人结肠癌细胞裸鼠移植瘤的治疗效果优于原药DOX,差异性非常显著。③药代动力学研究与原药DOX 比较,DOX-EBP血药浓度-时间曲线下面积增大,血药量增加,半衰期增加,作用时间延长;DOX-EBP在肿瘤组织中的峰浓度高、持续时间长,肿瘤组织浓度-时间曲线下面积增大,药量增加;DOX-EBP在正常组织中的峰浓度低、时间短,组织浓度-时间曲线下面积减小,药量下降。④毒理学和一般药理学研究显示,DOX-EBP最大耐受量和半数致死量等均较原药DOX显著增高,毒性非常低。且对神经系统、心血管系统和呼吸系统无影响。该研究结果发表于 Molecular Pharmaceutics 2011, 8(2): 375-386Brithsh Journal of Pharmacology 2013, 168(7): 1719-1735

 

环丙烷类抗癫痫和抗惊厥药物的研究进展

癫痫是脑内最常见的慢性神经系统疾病。几十年来,不同种类的药物已被用于治疗癫痫。尽管许多手术已经取得的进展,但药物治疗仍然是治疗癫痫病的基础。具有好的疗效的抗癫痫药物,应该具有更好的选择性,较低的毒性,这将是继续深入调查的一个方面。此外,耐药性是一个重要的临床问题,而它与增加癫痫症的风险相关的发病率和死亡率有关。

将具有较高活性和刚性结构的偕二甲基环丙烷分别引入乙内酰脲,二氢嘧啶酮结构中,形成螺环乙内酰脲和螺环二氢嘧啶酮类产物,在合成的几百个新化合物中发现了具有较高活性的可能开发为新药的化合物6个,目前已经进行的成药性研究并发现有很好的成药前景。它们主要特点是在高剂量的时候与市面常用的苯妥英钠和卡马西平相当,低剂量的时候要好,且毒性低很多。我们建立了3个抗惊厥和抗癫痫动物模型,进行了药效学研究。同时开展了药动和药代方面的初步研究。抗癫痫和抗惊厥一类新药成药性前期研究取得的进展:研究了该化合物的药理活性和安全性。该研究结果近期发表于European Journal of Medicinal Chemistry 2012,48:338-346Chemical Biology and Drug Design 2012,79(5):771-779,授权专利两项。

 

胺基甾体及甾类神经肌肉阻断剂设计与合成的研究进展

神经-肌肉阻断剂(Neuromuscular blocking agents, NMBAs),通常是指这样一种化合物:通过阻断神经递质乙酰胆碱(Acetylcholine,简称ACh)与神经-肌肉接头(也叫运动终板)突触后膜上的烟碱样乙酰胆碱受体(Nicotinic acetylcholine receptor,简称nAChR或N受体)结合,干扰神经冲动从运动神经末梢向肌肉的传递,从而使肌肉产生松弛。临床上使用的NMBAs叫肌肉松弛药,简称肌松药,常常用于外科手术中辅助麻醉。虽然可供选择的肌松药很多,但是都有各自的应用局限。因此,副作用少并且快速起效、快速消除仍是肌松药开发的主要目标。

以神经肌肉阻断剂构效关系为基础,以表雄酮为起始原料,经溴化、取代等多步骤反应,合成3,16-二氮杂环和4,16-二氮杂环二个全新系列的甾体类化合物。使用IR、UV、MS、1H NMR、13C NMR、X-ray等进行结构表征;探讨甾体结构在反应过程中的复杂机制;通过动物试验考察所有设计和合成的新结构系列甾体化合物的神经肌肉阻断活性,筛选出安全、高效的新型神经肌肉阻断剂,特别是临床上广泛需求的非去极化型快速插管药物。目前已经筛选出3个具备开发价值的新结构化合物,具有比较好的生物活性。该研究结果近期发表于European Journal of Medicinal Chemistry 2012,56:332-347

 

含氮杂环类化合物的合成及生物活性的研究进展

设计能与DNA结合的小分子配体是发展针对DNA的诊断试剂和治疗药物的关键。咔唑衍生物是潜在的抗肿瘤和AIDS机会感染的药物。我们设计合成了两个咔唑衍生化合物,DPDI和DPPDI,它们的DNA结合性质都与离子强度相关。在低离子强度下,平面的芳香性DPDI对DNA有强烈的插入作用,而在DPPDI,苯基取代了-NH上H原子破坏了分子平面性,导致没有DPPDI不能插入DNA。同时,DNA的CD上260-270 nm的增强和H 33258竞争结合测试表明DPPDI和DPDI均与DNA有强烈的沟槽结合。DPDI和DPPDI之间结构的异同可以解释它们与DNA不同的结合模式。在沟槽结合中,DPDI和DPPDI的吡啶盐的二阳离子与DNA的碱基作用,而DPDI上的-NH或DPPDI的-N–Ph均指向沟外,与经典的DNA沟槽结合试剂一致。此外,AFM成像显示两个咔唑衍生物与DNA的结合作用使DNA构象更紧凑。所有的实验数据证明了这两个dicationic咔唑衍生物与DNA相互作用强烈,可能作为一种新型的DNA结合的候选物。该研究结果近期发表于Organic & Biomolecular Chemistry2013,11(33),5512-5520

 

抗癌聚肽类天然产物Actinomycin G的生物合成机理的研究进展

Actinomycin是一类具有良好抗癌活性的聚肽类天然产物。大多数成员的化学机构中包含两个不对称聚肽大环内酯(a和b环),其生物合成基因簇中则包含四个NRPS聚合酶编码基因,分别负责大环内酯的合成。与其它成员相比,Actinomycin G的化学结构略显不同,其G2,G3和G4三个成员的b环中分别包含N-甲基丙氨酸、4-氯苏氨酸和4-羟基苏氨酸三种独特的稀有氨基酸。虞沂副教授课题组与阿伯丁大学邓海实验室密切合作,在已有Actinomycin生物合成途径基础上,利用生物信息学、体内遗传敲除和体内互补等手段对上述Actinomycin G中的稀有氨基酸生物合成过程中所发生的羟化和卤化反应进行了研究。结果表明,其基因簇中的一个P450羟化酶AcmG8和一个a-KG依赖的卤化酶AcmG9负责以上修饰反应,有意思的是,两个酶必须协同反应,而不能单独进行催化,这也是首次发现具有该特征的卤化酶。相关成果发表于Molecular Biosystems 2013, 9(6):1286-1289

 

链霉菌中戊丙酯菌素生物合成调控的研究进展

链霉菌Streptomyces exfoliatus UC5319和S. arenae TÜ469中倍半萜抗生素戊丙酯菌素生物合成基因簇中含有同源的两个基因penRpntR编码MarR/SlyA家族的转录调控因子,负责调控戊丙酯菌素的生物合成。凝胶阻滞实验证明PenR能够结合在penR-gapN基因间区域和penM-penH基因间区域,PntR能够结合在pntR-gapR基因间区域。蛋白结合的区域可以限缩到高度保守的37 bp的DNA片段。戊丙酯菌素以及生物合成过程中的两个中间体戊丙酯菌素D和F,都能够作为效应物分子,使蛋白PntR和PenR从其靶DNA上解离下来。中断penR基因得到的突变株S. exfoliatus ΔpenR ZD27,戊丙酯菌素产量明显降低,而利用penR或者pntR分别对突变株进行回补,回补菌株戊丙酯菌素的产量得到恢复。反转录PCR实验表明,与野生型相比,突变株ZD27中戊丙酯菌素生物合成基因簇和抗性基因的转录水平明显下降,penR基因本身的转录水平则明显升高。因此,PenR正调控戊丙酯菌素合成,负调自身基因的转录。朱冬青副教授课题组此研究结果近期发表于Journal of Bacteriology 2013, 195(6):1255-1266

 

核苷类抗生素组合生物合与合成生物学的研究进展

核苷类抗生素是一类具有独特化学结构与显著生物活性的微生物药物,其生物活性的广泛性近年来备受瞩目;作为代表性的核苷类抗生素,多氧霉素(Polyoxin)对植物病原真菌病害具有良好的防治效果,迄今为止,多氧霉素已成为使用最广泛、并至今未产生耐药性的绿色生物农药之一;尼可霉素(Nikkomycin)在治疗人体深层真菌感染方面也显示出良好的应用前景。

多氧霉素与尼可霉素具有相似的化学结构模块或单元,具有利用组合生物合成及其合成生物学手段进行产量提高和结构改造以形成新药物的巨大空间。最近,陈文青课题组通过与上海交通大学微生物代谢国家重点实验室合作,在核苷类抗生素的合成生物学领域获得突破。他们基于多氧霉素和尼可霉素的模块化结构,重新设计出四个Polyoxin-Nikkomycin杂合抗生素,同时改造并利用多氧霉素工业菌株作为超级宿主,成功实现了目标杂合抗生素的超高效理性化产生。获得的四个杂合核苷类抗生素(Polyoxin N, Nikkoxin B, Nikkoxin C及Nikkoxin D)对人类或植物病原真菌都显示出良好的生物活性,其中Nikkoxin D对于人类条件致病-皮状丝孢酵母的抗菌活性与天然抗生素相比有显著提高,故具有潜在的临床开发价值。相关研究成果已在Metabolic Engineering 2012,14(4):388-393上发表。

 

药物分析与筛选新方法的研究进展

药物分析与筛选新技术与新方法的建立是药物研究的重要内容。陈子林教授课题组以气相色谱、液相色谱、毛细管电泳及电色谱与质谱联用新技术、生物传感技术等现代分析技术为手段开展药物分析与筛选新方法研究,主要进展包括:

(1)高选择性固相微萃取(SPME)与液相色谱联用新方法。在实际样品分析中,由于样品基质的复杂性及被分析样品组分含量的低微,导致即使采用昂贵的现代分析仪器无法直接准确测定目标组分的含量。研究具有选择性富集(Concentration)目标组分和除杂(Clean-up)双重功能的固相微萃取样品前处理技术是解决问题的有效途径。本课题组采用Mussel-inspired的仿生技术与整体柱(Monolithic column)技术及多层分子自组装技术(Multiple layer-assembly)相结合,在PEEK及不锈钢等惰性材料的液相色谱进样定量环(Sample Loop)内修饰具有高选择性、高效分子识别固相微萃取材料,并设计成online SPME与液相色谱(LC)联用系统,成功应用于超微量中药活性生物碱组分及环境样品中多环芳烃类化合物的高灵敏度检测。研究结果发表于Analytical Chemistry 2013,85:6846-6854Journal of Chromatography A 2013,1278:29-36

(2)基于生物传感及电动分离技术的药物筛选新方法。分析技术手段是实现高通量药物筛选的有效方法。以一氧化氮(NO)为生物标记物,采用电化学方法构建以纳米材料为分子识别界面的高灵敏度NO传感器,并将研制成功的NO传感器in-stiu监测中药活性组分处理后小鼠肝脏释放NO的影响,为抗衰老等药物筛选提供新的筛选方法。研究结果发表于:Biosensors & Bioelectronics, 2013,50:57-61。其次,基于电泳媒介微分析技术(EMMA:Electrophoretically mediated microanalysis)建立了一种芳香化酶抑制剂筛选新方法并成功应用于多种中药化学组分抗肿瘤活性筛选和酶动力学活性研究。研究结果发表于:Journal of Separation Science2013,36:2691-2697。此外,采用固相萃取与气质联用(GC-MS)技术建立了一种具有抗癌作用的植物激素茉莉酸及茉莉酸甲酯手性异构体的检测,论文发表于:Journal of Agricultural and Food Chemistry 2013, 61:6288-6292


血管生成转录因子研究新进展

血管生成(Angiogenesis)是从已有的血管形成新的毛细血管的过程,这是一个给组织提供氧气和其他营养物质的生理机制,然而这也是从良性肿瘤转变为恶性肿瘤重要一个步骤。深入了解与血管生成相关的疾病的机制,可以为新药研发提供新靶点。比如,最近的研究发现了多种新型血管生成正负调节因子,其中转录增强子TEF3-1蛋白是VEGF启动子的新发现的一个转录因子。刘鑫副教授课题组发现TEF3-1转录激活片段TEF3-11-66和TEF3-1197-265显著提高内皮细胞增殖能力、迁移能力、F-actin stress fiber形成和下游功能靶蛋白的表达,说明TEF3-1分子中这两个转录激活结构域能独立完成激活功能,并促进血管生成。该研究可帮助解析TEF3-1蛋白的转录激活结构域,及其对血管生成的调控作用,为研发血管生成抑制剂提供靶点及理论依据。进一步研究发现中药汉方己甲素及蝎毒多肽等也可以通过控制血管内皮细胞的细胞周期,从而抑制肿瘤的生长。相关结果发表在Arch Biochem Biophys,Inter J Oncology,Cell Biosci,Oncotarget


核苷类抗生素合成生物学研究再获新进展

多氧霉素(Polyoxin)与尼可霉素(Nikkomycin)是核苷类抗生素的典型代表。多氧霉素对植物病原真菌病害具有良好的防治效果,迄今为止,多氧霉素已成为使用最广泛、并至今未产生耐药性的绿色生物农药之一;尼可霉素 Z在治疗人体深层真菌感染方面也显示出良好的应用前景,该抗生素于2014年10月已被FDA批准为临床药物用以治疗球孢子菌病(Valley fever)。

基于多氧霉素与尼可霉素结构模块的相似性及基因的同源性,陈文青副教授课题组克服了传统合成化学的局限性,在核苷类抗生素合成生物学领域又获新突破。通过工程化改造多氧霉素工业菌株,在尼可霉素Z 核苷骨架C-5位引入了多样化修饰(-CH3,-CH2OH,-COOH),进而成功产生了3个目标杂合抗生素Nikkoxin E-G。相关抗生素对人类或植物病原真菌皆显示出良好的生物活性,其中与Nikkomycin Z相较而言,Nikkoxin E对人类条件致病-皮状丝孢酵母的生物活性有显著提高,Nikkoxin F对于水稻纹枯病的抑制活性则亦有明显增强,由此显示出目标杂合抗生素潜在的临床开发价值。陈文青副教授课题组相关研究成果已正式发表于2014年9月Biotechnology and Bioengineering,并在当期被遴选为亮点文章(Spotlight)进行评述。该成果将有助于进一步深入解析核苷类抗生素的生物合成机理,同时也为利用合成生物学策略定向产生更多新型肽核苷类抗生素提供了良好范例。


半枝莲中逆转卵巢癌顺铂耐药的黄酮类化合物

肿瘤耐药一直是肿瘤研究领域的前沿及热点。针对临床化疗方案中大量使用的铂类药物的耐药问题,研究铂类药物耐药逆转剂具有重要的意义。余建清教授课题组从中药半枝莲中获得多种黄酮化合物,研究这些黄酮化合物与顺铂合用对卵巢癌耐药的逆转作用,并对构效关系进行了分析,3种黄酮化合物作用效果明显,相关研究结果发表在Natural Product Research,这些为开发顺铂耐药逆转剂新药奠定了基础。